生信分析、meta分析、数据挖掘
TCGA、GEO、SEER、Oncomine

机器学习|自然语言理解-从规则到深度学习

本文转载自 云栖社区 ,如有侵权请联系删除。


摘要:自然语言理解是人工智能的核心难题之一,也是目前智能语音交互和人机对话的核心难题。之前写过一篇文章自然语言理解,介绍了当时NLU的系统方案,感兴趣的可以再翻一番,里面介绍过的一些内容不再赘述。本文详细讨论了自然语言理解的难点,并进一步针对自然语言理解的两个核心问题,详细介绍了规则方法和深度学习的应用。

引言

自然语言理解是人工智能的核心难题之一,也是目前智能语音交互和人机对话的核心难题。维基百科有如下描述[1]:


Natural language understanding (NLU) is a subtopic of natural language processing in artificial intelligence thatdeals with machine reading comprehension. NLU is considered an AI-hard problem.


对于AI-hard的解释如下:


In the field of artificial intelligence, the most difficult problems are informally known as AI-complete or AI-hard,implying that the difficulty of these computational problems is equivalent to that of solving the central artificial intelligence problem—making computers as intelligent as people, or strong AI.


简言之,什么时候自然语言能被机器很好的理解了,strong AI也就实现了~~


之前写过一篇文章自然语言理解,介绍了当时NLU的系统实现方案,感兴趣的可以再翻一番,里面介绍过的一些内容不再赘述。那篇文章写于2015年底,过去一年多,技术进展非常快,我们的算法也进行了大量升级,核心模块全部升级到深度学习方案。本文主要结合NUI平台中自然语言理解的具体实现,详细的、系统的介绍意图分类和属性抽取两个核心算法。如下图所示,第一个框中是意图分类,第二个框中是属性抽取。

对于整个NUI平台的介绍可以参考孙健/千诀写的从“连接”到“交互”—阿里巴巴智能对话交互实践及思考。

自然语言理解的难点

为什么自然语言理解很难?本质原因是语言本身的复杂性。自然语言尤其是智能语音交互中的自然语言,有如下的5个难点:


1. 语言的多样性


一方面,自然语言不完全是有规律的,有一定规律,也有很多例外;另一方面,自然语言是可以组合的,字到词,词到短语,短语到从句、句子,句子到篇章,这种组合性使得语言可以表达复杂的意思。以上两方面共同导致了语言的多样性,即同一个意思可以有多种不同的表达方式,比如:


  • 我要听大王叫我来巡山

  • 给我播大王叫我来巡山

  • 我想听歌大王叫我来巡山

  • 放首大王叫我来巡山

  • 给唱一首大王叫我来巡山

  • 放音乐大王叫我来巡山

  • 放首歌大王叫我来巡山

  • 给大爷来首大王叫我来巡山

2. 语言的歧义性


在缺少语境约束的情况下,语言有很大的歧义性,比如:


  • 我要去拉萨

  • 火车票?

  • 飞机票?

  • 音乐?

  • 还是查找景点?


3. 语言的鲁棒性


语言在输入的过程中,尤其是通过语音识别转录过来的文本,会存在多字、少字、错字、噪音等等问题,比如:


  • 错字 

  • 大王叫我来新山

  • 多字 

  • 大王叫让我来巡山

  • 少字 

  • 大王叫我巡山

  • 别称 

  • 熊大熊二(指熊出没)

  • 不连贯 

  • 我要看那个恩花千骨

  • 噪音 

  • 全家只有大王叫我去巡山咯


4. 语言的知识依赖


语言是对世界的符号化描述,语言天然连接着世界知识,比如:


  • 大鸭梨 

  • 除了表示水果,还可以表示餐厅名

  • 七天 

  • 除了表示时间,还可以表示酒店名

  • 总参 

  • 除了表示总参谋部,还可以表示餐厅名

  • 天气预报 

  • 还是一首歌名

  • 晚安

  • 这也是一首歌名


5. 语言的上下文


上下文的概念包括很多内容,比如:


  • 对话上下文

  • 设备上下文

  • 应用上下文

  • 用户画像


U:买张火车票
A:请问你要去哪里?
U:宁夏  


这里的宁夏是指地理上的宁夏自治区


U:来首歌听

A:请问你想听什么歌?
U:宁夏  


这里的宁夏是指歌曲宁夏

意图分类的实现方法

意图分类是一种文本分类。主要的方法有:


  • 基于规则(rule-based)

  • CFG

  • JSGF

  • ……


  • 传统机器学习方法

  • SVM

  • ME

  • ……


  • 深度学习方法

  • CNN

  • RNN/LSTM

  • ……


3.1 基于规则的方法


这里重点介绍基于CFG的方法[2],该方法最早出现于CMU Phoenix System中,以下是一个飞机票领域的示例:

按照上面的文法,对于“从北京去杭州的飞机票”,可以展成如下的树:

3.2 基于传统统计的方法


我们在第一版的系统中,采用的基于SVM的方法,在特征工程上做了很多工作。第二版中切换到深度学习模型后,效果有很大提升,此处略过,直接介绍深度学习方法。


3.3 基于深度学习的方法


深度学习有两种典型的网络结构:

  • CNN(卷积神经网络)

  • RNN(循环神经网络)


基于这两种基本的网络结构,又可以衍生出多种变形。我们实验了以下几种典型的网络结构:


  • CNN [3]

  • LSTM [4]

  • RCNN [5]

  • C-LSTM [6]


从实验结果来看,简单的CNN的效果最好,其网络结构如下:

单纯的CNN分类效果无法超越复杂特征工程的SVM分类器,尤其是在像音乐、视频等大量依赖世界知识的领域中。比如怎么把如下的世界知识融入到网络中去:

这背后更大的背景是,深度学习在取得巨大成功后,慢慢开始显露出瓶颈,比如如何表示知识、存储知识,如何推理等。其中一个探索方向就是试图把联结主义和符号主义进行融合。纯粹的基于联结主义的神经网络的输入是distributedrepresentation,把基于符号主义的symbolic representation融合到网络中,可以大大提高效果,比如:

属性抽取的实现方法

属性抽取问题可以抽象为一个序列标注问题,如下例:



  • 基于规则(rule-based) 

  • Lexicon-based

  • CFG

  • JSGF

  • ……


  • 传统机器学习方法 

  • HMM

  • CRF

  • ……


  • 深度学习方法 

  • RNN/LSTM

  • ……


4.1 基于规则的方法


这里主要介绍基于JSGF(JSpeech Grammar Format)的方法:



JSGF is a BNF-style, platform-independent, and vendor-independent textual representation of grammars for use in speech recognition.



其基本的符号及其含义如下:

比如对于如下的示例:

可以展开成图:

对于“帮我打开空调”,其在图中的匹配路径如下:

匹配到这条路径后,可以根据标签,把“空调”抽取到device这个属性槽上。


4.2 基于传统统计的方法


经典算法为CRF,略过。


4.3 基于深度学习的方.


用于序列标注的深度学习模型主要有[7]:


  • RNN

  • LSTM

  • Bi-LSTM

  • Bi-LSTM-Viterbi

  • Bi-LSTM-CRF


也有一些多任务联合训练的模型,比如[8]、[9]。


在我们的系统中,采用的是Bi-LSTM-CRF模型:

同样的,在input上,将distributed representation和symbolic representation做了融合。

小结

在实际的系统中,基于规则的方法和基于深度学习的方法并存。基于规则的方法主要用来快速解决问题,比如一些需要快速干预的BUG;基于深度学习的方法是系统的核心。

参考文献

[1]https://en.wikipedia.org/wiki/Natural_language_understanding

[2] Ward & Issar, CMU Phoenix System, 1996 
[3] Yoon Kim, Neural Networks for Sentence Classification, EMNLP, 2014
[4] Suman Ravuri and Andreas Stolcke, Recurrent Neural Network and LSTM Models for Lexical Utterance Classification, InterSpecch, 2015 
[5] Siwei Lai, Liheng Xu, Kang Liu, Jun Zhao, Recurrent Convolutional Neural Networks for Text Classification, AAAI, 2015
[6] Chunting Zhou, Chonglin Sun, Zhiyuan Liu, Francis C.M. Lau, A C-LSTM Neural Network for Text Classification, arXiv, 2015 
[7] Grégoire Mesnil, et. al, Using Recurrent Neural Networks for Slot Filling in Spoken Language Understanding, TASLP, 2015
[8] Xiaodong Zhang, HoufengWang, A Joint Model of Intent Determination and Slot Filling for Spoken Language Understanding, IJCAI, 2016
[9] Bing Liu, Ian Lane, Joint Online Spoken Language Understanding and Language Modeling with Recurrent Neural Networks, arxiv, 2016


本文转载自 云栖社区 ,如有侵权请联系删除 。

推荐阅读
  1. 【原创】挖掘乳腺癌潜在调控基因的新利器:BCIP

  2. 超实用!微生物重测序分析软件——bwa的使用

  3. 还在为微生物重测序变异检测发愁?samtools帮助你!

  4. 新型“液体活检”!非小细胞肺癌诊断准确率高达近90%

  5. 【期待您的参加】协云基因微生物信息专题研讨班

生信圈致力于每天推送生物信息干货,让大家了解生信行业。旨在通过更多的交流促进行业的发展。我们一直在寻找志同道合的伙伴!投稿邮箱:[email protected]

生信圈

微信ID:bioinfor-club

1.点击历史信息,查看更多内容

2.长按右侧二维码,关注更多生物信息干货

长按二维码关注

赞(0) 打赏
未经允许不得转载:医学SCI科研之家 » 机器学习|自然语言理解-从规则到深度学习
分享到: 更多 (0)

评论 抢沙发

评论前必须登录!

 

meta分析、生信分析

meta、生信交流群综合科研交流群